guard digit - definitie. Wat is guard digit
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:     

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is guard digit - definitie

Guard digits

Numerical digit         
  • The ten digits of the [[Arabic numerals]], in order of value.
NUMERIC SYMBOL USED IN COMBINATIONS TO REPRESENT NUMBERS IN POSITIONAL NUMERAL SYSTEMS
Decimal digit; Tenths digit; Digit (math); Units place; Unit's place; 10s place; 10's place; Tens place; Ten's place; Ones place; One's place; 1s place; 1's place; Units digit; Unit's digit; Units column; Numerical digits; Digital value; Digit value; Arabic decimal digit; Numeric digit
A numerical digit (often shortened to just digit) is a single symbol used alone (such as "2") or in combinations (such as "25"), to represent numbers in a positional numeral system. The name "digit" comes from the fact that the ten digits (Latin digiti meaning fingers) of the hands correspond to the ten symbols of the common base 10 numeral system, i.
Guard (computer science)         
BOOLEAN EXPRESSION EVALUATED TO DETERMINE IF A BRANCH OF A COMPUTER PROGRAM SHOULD CONTINUE TO BE EXECUTED
Guard statement; Pattern guard; Guard statements; Guard (computing); Guard clause; Guard pattern
In computer programming, a guard is a boolean expression that must evaluate to true if the program execution is to continue in the branch in question.
Seven-digit dialing         
TELEPHONE DIALING PROCEDURE
7 digit dialing; 7-digit dialing; Seven-digit dialling
Seven-digit dialing is a telephone dialing procedure customary in some territories of the North American Numbering Plan (NANP) for dialing telephone numbers in the same numbering plan area (NPA). NANP telephone numbers consist of ten digits, of which the leading three are the area code.

Wikipedia

Guard digit

In numerical analysis, one or more guard digits can be used to reduce the amount of roundoff error.

For example, suppose that the final result of a long, multi-step calculation can be safely rounded off to N decimal places. That is to say, the roundoff error introduced by this final roundoff makes a negligible contribution to the overall uncertainty.

However, it is quite likely that it is not safe to round off the intermediate steps in the calculation to the same number of digits. Be aware that roundoff errors can accumulate. If M decimal places are used in the intermediate calculation, we say there are M−N guard digits.

Guard digits are also used in floating point operations in most computer systems. Given 2 1 × 0.100 2 2 0 × 0.111 2 {\displaystyle 2^{1}\times 0.100_{2}-2^{0}\times 0.111_{2}} we have to line up the binary points. This means we must add an extra digit to the first operand—a guard digit. This gives us 2 1 × 0.1000 2 2 1 × 0.0111 2 {\displaystyle 2^{1}\times 0.1000_{2}-2^{1}\times 0.0111_{2}} . Performing this operation gives us 2 1 × 0.0001 2 {\displaystyle 2^{1}\times 0.0001_{2}} or 2 2 × 0.100 2 {\displaystyle 2^{-2}\times 0.100_{2}} . Without using a guard digit we have 2 1 × 0.100 2 2 1 × 0.011 2 {\displaystyle 2^{1}\times 0.100_{2}-2^{1}\times 0.011_{2}} , yielding 2 1 × 0.001 2 = {\displaystyle 2^{1}\times 0.001_{2}=} or 2 1 × 0.100 2 {\displaystyle 2^{-1}\times 0.100_{2}} . This gives us a relative error of 1. Therefore, we can see how important guard digits can be.

An example of the error caused by floating point roundoff is illustrated in the following C code.

It appears that the program should not terminate. Yet the output is :

i=54, a=1.000000

Another example is:

Take 2 numbers:

2.56 × 10 0 {\displaystyle 2.56\times 10^{0}} and 2.34 × 10 2 {\displaystyle 2.34\times 10^{2}}

we bring the first number to the same power of 10 {\displaystyle 10} as the second one:

0.0256 × 10 2 {\displaystyle 0.0256\times 10^{2}}

The addition of the 2 numbers is:

0.0256*10^2 
2.3400*10^2 +  
____________ 
2.3656*10^2 

After padding the second number (i.e., 2.34 × 10 2 {\displaystyle 2.34\times 10^{2}} ) with two 0 {\displaystyle 0} s, the bit after 4 {\displaystyle 4} is the guard digit, and the bit after is the round digit. The result after rounding is 2.37 {\displaystyle 2.37} as opposed to 2.36 {\displaystyle 2.36} , without the extra bits (guard and round bits), i.e., by considering only 0.02 + 2.34 = 2.36 {\displaystyle 0.02+2.34=2.36} . The error therefore is 0.01 {\displaystyle 0.01} .